Shrinkage estimation for convex polyhedral cones
نویسندگان
چکیده
Estimation of a multivariate normal mean is considered when the latter is known to belong to a convex polyhedron. It is shown that shrinking the maximum likelihood estimator towards an appropriate target can reduce mean squared error. The proof combines an unbiased estimator of a risk difference with some geometrical considerations. When applied to the monotone regression problem, the main result shows that shrinking the maximum likelihood estimator towards modifications that have been suggested to alleviate the spiking problem can reduce mean squared error. r 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Shrinkage to Smooth Non-convex Cone : Principal Component Analysis as Stein Estimation
In Kuriki and Takemura (1997a) we established a general theory of James-Stein type shrinkage to convex sets with smooth boundary. In this paper we show that our results can be generalized to the case where shrinkage is toward smooth non-convex cones. A primary example of this shrinkage is descriptive principal component analysis, where one shrinks small singular values of the data matrix. Here ...
متن کاملAngular analysis of two classes of non - polyhedral convex cones : the point of view of optimization theory ∗
There are three related concepts that arise in connection with the angular analysis of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in nature but they can also be approached from the perspective of optimization theory. A detailed angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This note focus on two import...
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملAn Algorithm for Finding All Extremal Rays of Polyhedral Convex Cones with Some Complementarity Conditions
In this paper, we show a method for finding all extremal rays of polyhedral convex cones with some complementarity conditions. The polyhedral convex cone is defined as the intersection of half-spaces expressed by linear inequalities. By a complementarity extremal ray, we mean an extremal ray vector that satisfies some complementarity conditions among its elen~nts. Our method is iterative in the...
متن کامل